POUCO CONHECIDO FATOS SOBRE BATTERIES.

Pouco conhecido Fatos sobre batteries.

Pouco conhecido Fatos sobre batteries.

Blog Article

The electrochemical reaction in a battery is carried out by moving electrons from one material to another (called electrodes) using an electric current. The first battery was invented in 1800 by Italian physicist Alessandro Volta.

Manufacturers often publish datasheets with graphs showing capacity versus C-rate curves. C-rate is also used as a rating on batteries to indicate the maximum current that a battery can safely deliver in a circuit. Standards for rechargeable batteries generally rate the capacity and charge cycles over a 4-hour (0.25C), oito hour (0.125C) or longer discharge time. Types intended for special purposes, such as in a computer uninterruptible power supply, may be rated by manufacturers for discharge periods much less than one hour (1C) but may suffer from limited cycle life.

Batteries can act as a pushing force to push the electrons through a component to make it work. Batteries can only act as the pushing force for a limited amount of time, this depends on how much charge the battery has and also how much energy is demanded by the load.

Common household batteries Primary batteries type chemistry sizes and common applications features zinc-carbon (Leclanché) zinc alloy anode-manganese dioxide cathode with an electrolyte mix of 80 percent ammonium chloride and 20 percent zinc chloride surrounding a carbon rod electrode; 1.55 volts per cell, declining in use widest range of sizes, shapes, and capacities (including all major cylindrical and rectangular jackets); used in remote controls, flashlights, portable radios cheap and lightweight; low energy density; very poor for high-drain applications; poor performance at low temperatures; disposal hazard from toxic mercury and cadmium present in zinc alloy zinc chloride zinc anode-manganese dioxide cathode with zinc chloride electrolyte; 1.55 volts per cell, declining in use wide range of cylindrical and rectangular jackets; used in motorized toys, cassette and CD players, flashlights, portable radios usually labeled "heavy duty"; less voltage decline at higher drain rates and lower temperatures than zinc-carbon; typically 2–3 times the life of zinc-carbon batteries; environmentally safe Alkaline zinc-manganese dioxide zinc anode-manganese dioxide cathode with potassium hydroxide electrolyte; 1.55 volts per cell wide range of cylindrical and rectangular jackets; best for use in motorized toys, cassette and CD players long shelf life; leak-resistant; best performance under heavy loads; 4–10 times the life of zinc-carbon batteries zinc-silver oxide zinc anode-silver oxide cathode with a potassium hydroxide electrolyte; 1.55 volts per cell button batteries; used in hearing aids, watches, calculators high energy density; long shelf life; expensive zinc-air zinc anode-oxygen cathode with potassium hydroxide electrolyte cylindrical, 9-volt, button, and coin jackets; used in hearing aids, pagers, watches highest energy density of all disposable batteries; virtually unlimited shelf life; environmentally safe Lithium lithium-iron sulfide lithium anode-iron sulfide cathode with organic electrolyte; 1.

Batteries can only provide a DC power supply that is generated from a chemical reaction that takes place within the battery. Batteries also only ever feature positive and negative terminals where the current will only ever flow in the same direction between the two terminals.

Primary batteries are designed to be used until exhausted of energy then discarded. Their chemical reactions are generally not reversible, so they cannot be recharged. When the supply of reactants in the battery is exhausted, the battery stops producing current and is useless.[29]

Primary (single-use or "disposable") batteries are used once акумулатори and discarded, as the electrode materials are irreversibly changed during discharge; a common example is the alkaline battery used for flashlights and a multitude of portable electronic devices.

It can be mounted in any position and does not require regular maintenance. It has a relief valve that is activated when the battery generates hydrogen gas.

Batteries work by converting chemical energy into electrical energy. This process is known as electrochemical oxidation-reduction or redox. When a battery is in use, the chemical reaction produces electrons, which flow through the battery to power the attached device.

These types of batteries cannot be recharged once they are exhausted. They are composed of electrochemical cells whose electrochemical reactions cannot be reversed.

Every battery (or cell) has a cathode, or positive plate, and an anode, or negative plate. These electrodes must be separated by and are often immersed in an electrolyte that permits the passage of ions between the electrodes. The electrode materials and the electrolyte are chosen and arranged so that sufficient electromotive force (measured in volts) and electric current (measured in amperes) can be developed between the terminals of a battery to operate lights, machines, or other devices.

When the anode and cathode are both connected to a circuit, this then creates a chemical reaction between the anode and the electrolyte. When this reaction takes place it causes electrons to flow through the circuit, this then flows back to the cathode where the chemical reaction can then take place again.

Alkaline batteries convert chemical energy into electrical energy by using manganese dioxide as the positive electrode and a zinc cylinder as the negative electrode to power an external circuit. The rechargeable alkaline battery is designed to be fully charged after repeated use.

The outer case or bottom of the battery is commonly referred to as the negative terminals. Both terminals are very common in all types of batteries. The chemicals that surround these terminals and the battery together form the power cell.

Report this page